VAMPIRE

eBACS: ECRYPT Benchmarking of Cryptographic Systems


ECRYPT II
General information:IntroductioneBASHeBASCeBAEADeBATSSUPERCOPXBXComputersArch
How to submit new software:Tipshashstreamaeaddhkemencryptsign
List of primitives measured:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
Measurements:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
List of subroutines:verifydecodeencodesortcorehashblocksxofscalarmult

Measurements of public-key Diffie–Hellman secret-sharing systems on one machine: amd64; Airmont (406c3); 2015 Intel Pentium N3700; 4 x 1600MHz; nucnuc, supercop-20241022

[Page version: 20241215 22:59:13]

eBATS (ECRYPT Benchmarking of Asymmetric Systems) is a project to measure the performance of public-key systems. This page presents benchmark results collected in eBATS for public-key Diffie–Hellman secret-sharing systems:

Each table row lists the first quartile of many speed measurements, the median of many speed measurements, the third quartile of many speed measurements, and the name of the primitive. Measurements with large variance are indicated in red with question marks. The symbol T: (starting with supercop-20200816) means that the SUPERCOP database at the time of benchmarking did not list constant time as a goal for this implementation. The symbol T!!! means that constant time was listed as a goal for this implementation, but that the implementation failed TIMECOP. (TIMECOP failures are not necessarily security issues; they can sometimes be resolved by, e.g., declaring that a rejection-sampling condition is safe to declassify.)

There is a separate page with more information about each Diffie–Hellman system and each implementation. Designers and implementors interested in submitting new Diffie–Hellman systems and new implementations of existing systems should read the call for submissions.


Test results

Graphs: (pkcycles,pkbytes) (scycles,pkbytes)

Cycles to generate a key pair
25%50%75%system
802338362887500
T:
jacfp127i
843108680090053
T:
kumjacfp127g
94410100749109373
T:
prjfp127i
96206103858111595
T:
hecfp127i
101213108395123115
T:
ecfp256e
107837110654122449
T:
curve2251
105907112754126769
T:
ecfp256h
110181116977135913
T:
ecfp256s
118109125450138516
T:
ecfp256q
138488140987143789
T:
gls254
131291?143860?164730?
T:
prjfp128bk
134984?144387?170915?
T:
hecfp128bk
134891?144448?170420?
T:
hecfp128fkt
133758145604161700
T:
jacfp128bk
136824146302166720
T:
hecfp128i
185096187297189198
T:
gls1271
206017206139206369
T:
gls254prot
280388280436280570
T:
kumfp127g
287663287828288067
T:
k277taa
305786306232308504
T:
k298
422138422182422277
T:
k277mon
447289447351447453
T:
kumfp128g
448382448444448515
T:
curve25519
502311505026509488
T:
ecfp256i
550390550396550537
T:
kummer
550240556645583168
T:
hector
566868569277571300
T:
surf127eps
612686613939616032
T:
nistp256
761913763086764348
T:
ed448goldilocks
769763778824785122
T:
sclaus1024
115384811684551183439
T:
surf2113
365859936601153664173
T:
ed521gs
379218738124353843518
T:
sclaus2048
431260843137844317659
T:
nist521gs
465206446610864670156
T:
claus
Cycles to compute a shared secret
25%50%75%system
135453139051142121
T:
gls254
205745205851206007
T:
gls254prot
283279283353283409
T:
kumfp127g
286599286641286755
T:
kumjacfp127g
287559287671288008
T:
k277taa
305037305286305625
T:
k298
317400317983318655
T:
jacfp128bk
370697371179372701
T:
hecfp128bk
374846375547376941
T:
prjfp128bk
384471385056386573
T:
hecfp128fkt
421914421914422004
T:
k277mon
422954425917427910
T:
curve2251
429009437732448676
T:
gls1271
442183442542443624
T:
jacfp127i
448282448282448316
T:
curve25519
457488457515457579
T:
kumfp128g
479950480379481477
T:
ecfp256e
502321502830504399
T:
ecfp256q
504081505136506074
T:
ecfp256i
520787521236523026
T:
prjfp127i
532509532868534337
T:
hecfp127i
550286550286550320
T:
kummer
564539566491568108
T:
surf127eps
595255596208598456
T:
ecfp256h
625214625786626985
T:
ecfp256s
780196781291792141
T:
sclaus1024
808566809285814033
T:
hecfp128i
115023411625301174141
T:
surf2113
186731019223361936788
T:
hector
208123720835742086577
T:
nistp256
263471526352842637418
T:
ed448goldilocks
365734836585593659459
T:
ed521gs
375850037739633861026
T:
sclaus2048
431169743128794313902
T:
nist521gs
465554746706994677417
T:
claus