VAMPIRE

eBACS: ECRYPT Benchmarking of Cryptographic Systems


ECRYPT II
General information:IntroductioneBASHeBASCeBAEADeBATSSUPERCOPXBXComputersArch
How to submit new software:Tipshashstreamaeaddhkemencryptsign
List of primitives measured:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
Measurements:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
List of subroutines:verifydecodeencodesortcorehashblocksxofscalarmult

Measurements of public-key Diffie–Hellman secret-sharing systems on one machine: amd64; K10 45nm (100f63); 2010 AMD Athlon II Neo K125; 1 x 1700MHz; h3neo, supercop-20241022

[Page version: 20250111 18:45:18]

eBATS (ECRYPT Benchmarking of Asymmetric Systems) is a project to measure the performance of public-key systems. This page presents benchmark results collected in eBATS for public-key Diffie–Hellman secret-sharing systems:

Each table row lists the first quartile of many speed measurements, the median of many speed measurements, the third quartile of many speed measurements, and the name of the primitive. Measurements with large variance are indicated in red with question marks. The symbol T: (starting with supercop-20200816) means that the SUPERCOP database at the time of benchmarking did not list constant time as a goal for this implementation. The symbol T!!! means that constant time was listed as a goal for this implementation, but that the implementation failed TIMECOP. (TIMECOP failures are not necessarily security issues; they can sometimes be resolved by, e.g., declaring that a rejection-sampling condition is safe to declassify.)

There is a separate page with more information about each Diffie–Hellman system and each implementation. Designers and implementors interested in submitting new Diffie–Hellman systems and new implementations of existing systems should read the call for submissions.


Test results

Graphs: old (pkcycles,pkbytes) (scycles,pkbytes)

Cycles to generate a key pair
25%50%75%system
323763262032919
T:
jacfp127i
350543533435670
T:
kumjacfp127g
389953935239811
T:
hecfp127i
392404006540891
T:
prjfp127i
514805238753126
T:
jacfp128bk
593516002760855
T:
prjfp128bk
599866066261439
T:
hecfp128i
604596113061878
T:
hecfp128bk
604346121861894
T:
hecfp128fkt
112483113460114471
T:
gls1271
131101131145131197
T:
kumfp127g
218981218983219060
T:
curve25519
224566224608224697
T:
kumfp128g
263921265804268444
T:
sclaus1024
293717294755295349
T:
surf127eps
342510342751343734
T:
ed448goldilocks
438746438750438845
T:
kummer
442001442715445113
T:
nistp256
470491473010490422
T:
hector
108330310887601091883
T:
surf2113
128180512915261301063
T:
sclaus2048
133361013383281339748
T:
curve2251
155549515558461557154
T:
ed521gs
156850115716431576564
T:
claus
Cycles to compute a shared secret
25%50%75%system
132626132629132635
T:
kumfp127g
134338134340134371
T:
kumjacfp127g
163453163522163664
T:
jacfp128bk
201087201363201428
T:
prjfp128bk
205998206027206056
T:
hecfp128bk
212484212540212662
T:
jacfp127i
213891213911213913
T:
hecfp128fkt
218954218954218955
T:
curve25519
230025230038230058
T:
kumfp128g
264096268135273861
T:
sclaus1024
269675270514275905
T:
gls1271
272003272011272045
T:
prjfp127i
281574281616281759
T:
hecfp127i
292823293373293452
T:
surf127eps
438611438635438711
T:
kummer
454623454711454759
T:
hecfp128i
943629944579945437
T:
ed448goldilocks
108830810905391091117
T:
surf2113
127936612987951308921
T:
sclaus2048
133810013387951339289
T:
curve2251
148295314837721486407
T:
nistp256
155520615555991555693
T:
ed521gs
156922915761221577293
T:
claus
163407916343301647206
T:
hector