VAMPIRE

eBACS: ECRYPT Benchmarking of Cryptographic Systems


ECRYPT II
General information:IntroductioneBASHeBASCeBAEADeBATSSUPERCOPXBXComputersArch
How to submit new software:Tipshashstreamaeaddhkemencryptsign
List of primitives measured:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
Measurements:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
List of subroutines:verifydecodeencodesortcorehashblocksxofscalarmult

Measurements of public-key Diffie–Hellman secret-sharing systems on one machine: amd64; Bonnell (106ca); 2010 Intel Atom N455; 1 x 1000MHz; h2atom, supercop-20241022

[Page version: 20250111 18:45:18]

eBATS (ECRYPT Benchmarking of Asymmetric Systems) is a project to measure the performance of public-key systems. This page presents benchmark results collected in eBATS for public-key Diffie–Hellman secret-sharing systems:

Each table row lists the first quartile of many speed measurements, the median of many speed measurements, the third quartile of many speed measurements, and the name of the primitive. Measurements with large variance are indicated in red with question marks. The symbol T: (starting with supercop-20200816) means that the SUPERCOP database at the time of benchmarking did not list constant time as a goal for this implementation. The symbol T!!! means that constant time was listed as a goal for this implementation, but that the implementation failed TIMECOP. (TIMECOP failures are not necessarily security issues; they can sometimes be resolved by, e.g., declaring that a rejection-sampling condition is safe to declassify.)

There is a separate page with more information about each Diffie–Hellman system and each implementation. Designers and implementors interested in submitting new Diffie–Hellman systems and new implementations of existing systems should read the call for submissions.


Test results

Graphs: old (pkcycles,pkbytes) (scycles,pkbytes)

Cycles to generate a key pair
25%50%75%system
126698127053127729
T:
jacfp127i
131897132287132820
T:
kumjacfp127g
139313139705140292
T:
prjfp127i
142920143240143826
T:
hecfp127i
217944218478219507
T:
jacfp128bk
245727246572247832
T:
hecfp128bk
246886247711248868
T:
hecfp128fkt
246744247893249647
T:
prjfp128bk
248185249095252254
T:
curve2251
248088249426291370
T:
hecfp128i
316154?320892?403584?
T:
gls1271
549218549232550341
T:
kumfp127g
103572310363201037189
T:
kumfp128g
110979711104641111508
T:
curve25519
131510813162611318734
T:
ed448goldilocks
134989313510511354329
T:
nistp256
173600017363131738136
T:
kummer
208248521018222124850
T:
sclaus1024
724669272533687268435
T:
ed521gs
107770281085708810931874
T:
sclaus2048
121345531216822212202770
T:
claus
Cycles to compute a shared secret
25%50%75%system
556646556672557264
T:
kumfp127g
559405559467560139
T:
kumjacfp127g
726302726367727526
T:
jacfp128bk
761779772801777851
T:
gls1271
862267862497864250
T:
prjfp128bk
886489886687889515
T:
hecfp128bk
923170924828926706
T:
hecfp128fkt
931985933007943618
T:
jacfp127i
101989810206111025718
T:
curve2251
106139810618051062429
T:
kumfp128g
110798311085581110877
T:
prjfp127i
110958411097371110668
T:
curve25519
114137211417431144126
T:
hecfp127i
173540617356601738028
T:
kummer
195488619561591957693
T:
hecfp128i
216125721766062180137
T:
sclaus1024
447364244747764483428
T:
ed448goldilocks
454038445420684555154
T:
nistp256
724486372466057263503
T:
ed521gs
108771081090856511103397
T:
sclaus2048
121400331216185312205928
T:
claus