VAMPIRE

eBACS: ECRYPT Benchmarking of Cryptographic Systems


ECRYPT II
General information:IntroductioneBASHeBASCeBAEADeBATSSUPERCOPXBXComputersArch
How to submit new software:Tipshashstreamaeaddhkemencryptsign
List of primitives measured:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
Measurements:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
List of subroutines:verifydecodeencodesortcorehashblocksxofscalarmult

Measurements of public-key Diffie–Hellman secret-sharing systems on one machine: amd64; Zen (800f11); 2017 AMD Ryzen 7 1700; 8 x 3000MHz; rumba7, supercop-20240909

[Page version: 20241006 02:11:52]

eBATS (ECRYPT Benchmarking of Asymmetric Systems) is a project to measure the performance of public-key systems. This page presents benchmark results collected in eBATS for public-key Diffie–Hellman secret-sharing systems:

Each table row lists the first quartile of many speed measurements, the median of many speed measurements, the third quartile of many speed measurements, and the name of the primitive. Measurements with large variance are indicated in red with question marks. The symbol T: (starting with supercop-20200816) means that the SUPERCOP database at the time of benchmarking did not list constant time as a goal for this implementation. The symbol T!!! means that constant time was listed as a goal for this implementation, but that the implementation failed TIMECOP. (TIMECOP failures are not necessarily security issues; they can sometimes be resolved by, e.g., declaring that a rejection-sampling condition is safe to declassify.)

There is a separate page with more information about each Diffie–Hellman system and each implementation. Designers and implementors interested in submitting new Diffie–Hellman systems and new implementations of existing systems should read the call for submissions.


Test results

Graphs: old (pkcycles,pkbytes) (scycles,pkbytes)

Cycles to generate a key pair
25%50%75%system
284702981731489
T:
jacfp127i
290093028632569
T:
prjfp127i
296913059132224
T:
kumjacfp127g
335503486336492
T:
hecfp127i
389784020140933
T:
jacfp128bk
407194140144090
T:
curve2251
415294256844615
T:
hecfp128fkt
412154263244523
T:
hecfp128bk
414704274044235
T:
prjfp128bk
414194276244774
T:
hecfp128i
436744382844033
T:
gls254
447234490144926
T:
gls254prot
556705580955891
T:
k277taa
640736439764546
T:
k298
654106618766971
T:
gls1271
892038925989393
T:
k277mon
100704100900100934
T:
kummer
102850102910102983
T:
kumfp127g
134096134203134266
T:
kumfp128g
144601144614144623
T:
curve25519
200786200939201274
T:
ed448goldilocks
201490203214205221
T:
sclaus1024
274802274923275220
T:
nistp256
476312478274478841
T:
surf2113
954493955103956491
T:
ed521gs
99372210033791010147
T:
sclaus2048
119690212008621204815
T:
claus
Cycles to compute a shared secret
25%50%75%system
423794260242635
T:
gls254
446494482444857
T:
gls254prot
556695578755860
T:
k277taa
640256420664397
T:
k298
890698913889227
T:
k277mon
100660100868100916
T:
kummer
104305104434104541
T:
kumfp127g
104584104667105279
T:
jacfp128bk
106380106425106467
T:
kumjacfp127g
126772126836126989
T:
prjfp128bk
129938130046130193
T:
hecfp128bk
134463134559134736
T:
hecfp128fkt
139084139111139138
T:
kumfp128g
156030157286159056
T:
curve25519
160247160624161301
T:
curve2251
162565162794163057
T:
jacfp127i
165191165523166418
T:
gls1271
199162200820201472
T:
sclaus1024
203782203897204794
T:
prjfp127i
207497207840208492
T:
hecfp127i
286065286419286561
T:
hecfp128i
476947477213477828
T:
surf2113
581475581821582591
T:
ed448goldilocks
946369947585947883
T:
nistp256
955790956483957133
T:
ed521gs
98908010032771014910
T:
sclaus2048
119378412006671213173
T:
claus