VAMPIRE

eBACS: ECRYPT Benchmarking of Cryptographic Systems


ECRYPT II
General information:IntroductioneBASHeBASCeBAEADeBATSSUPERCOPXBXComputersArch
How to submit new software:Tipshashstreamaeaddhkemencryptsign
List of primitives measured:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
Measurements:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
List of subroutines:verifydecodeencodesortcorehashblocksxofscalarmult

Measurements of public-key Diffie–Hellman secret-sharing systems on one machine: amd64; Tremont (906c0); 2021 Intel Celeron N5105; 4 x 2000MHz; jasper3, supercop-20240909

[Page version: 20241006 02:11:52]

eBATS (ECRYPT Benchmarking of Asymmetric Systems) is a project to measure the performance of public-key systems. This page presents benchmark results collected in eBATS for public-key Diffie–Hellman secret-sharing systems:

Each table row lists the first quartile of many speed measurements, the median of many speed measurements, the third quartile of many speed measurements, and the name of the primitive. Measurements with large variance are indicated in red with question marks. The symbol T: (starting with supercop-20200816) means that the SUPERCOP database at the time of benchmarking did not list constant time as a goal for this implementation. The symbol T!!! means that constant time was listed as a goal for this implementation, but that the implementation failed TIMECOP. (TIMECOP failures are not necessarily security issues; they can sometimes be resolved by, e.g., declaring that a rejection-sampling condition is safe to declassify.)

There is a separate page with more information about each Diffie–Hellman system and each implementation. Designers and implementors interested in submitting new Diffie–Hellman systems and new implementations of existing systems should read the call for submissions.


Test results

Graphs: (pkcycles,pkbytes) (scycles,pkbytes)

Cycles to generate a key pair
25%50%75%system
375133819239653
T:
kumjacfp127g
372613822239443
T:
jacfp127i
428614440846272
T:
prjfp127i
461574780349936
T:
hecfp127i
505215100552484
T:
curve2251
516165248753923
T:
jacfp128bk
538895418554704
T:
gls254
552505530355486
T:
gls254prot
616846308464876
T:
prjfp128bk
623056401766474
T:
hecfp128bk
633016463566514
T:
hecfp128i
624966549668142
T:
hecfp128fkt
675886771368018
T:
k277taa
762017709878757
T:
k298
969719819599277
T:
gls1271
983619859899123
T:
k277mon
154346154887155382
T:
kumfp127g
219178220775221383
T:
kumfp128g
241452241840242358
T:
curve25519
304651306512307862
T:
ed448goldilocks
320369320775321426
T:
kummer
327231330583333107
T:
sclaus1024
345223346147347566
T:
nistp256
598632601536604305
T:
surf2113
174374317479291754663
T:
ed521gs
176538917802151793393
T:
sclaus2048
197057719789331985490
T:
claus
197978819838251987680
T:
nist521gs
Cycles to compute a shared secret
25%50%75%system
528065285052923
T:
gls254
551555522055358
T:
gls254prot
675816770167853
T:
k277taa
751707652878048
T:
k298
982449838098547
T:
k277mon
157764158099158389
T:
kumfp127g
158825159008159192
T:
kumjacfp127g
162028163532164955
T:
jacfp128bk
192882193539193961
T:
curve2251
203338204475205623
T:
prjfp128bk
205681206195206446
T:
hecfp128bk
214289215833217707
T:
hecfp128fkt
227539227955228490
T:
kumfp128g
234578236842243984
T:
gls1271
241337241558241924
T:
curve25519
242024242936244086
T:
jacfp127i
312057313110314119
T:
prjfp127i
320200320612321186
T:
kummer
321182321696322214
T:
hecfp127i
327157328663334837
T:
sclaus1024
462833463619464764
T:
hecfp128i
595845601415602718
T:
surf2113
100326310039421008864
T:
ed448goldilocks
118068811822931183889
T:
nistp256
174605517498111752483
T:
ed521gs
177174017944161798860
T:
sclaus2048
197869319820101985299
T:
nist521gs
197377119872601989597
T:
claus