VAMPIRE

eBACS: ECRYPT Benchmarking of Cryptographic Systems


ECRYPT II
General information:IntroductioneBASHeBASCeBAEADeBATSSUPERCOPXBXComputersArch
How to submit new software:Tipshashstreamaeaddhkemencryptsign
List of primitives measured:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
Measurements:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
List of subroutines:verifydecodeencodesortcorehashblocksxofscalarmult

Measurements of public-key Diffie–Hellman secret-sharing systems on one machine: amd64; Bonnell (106ca); 2010 Intel Atom N455; 1 x 1000MHz; h2atom, supercop-20240625

[Page version: 20241006 02:11:52]

eBATS (ECRYPT Benchmarking of Asymmetric Systems) is a project to measure the performance of public-key systems. This page presents benchmark results collected in eBATS for public-key Diffie–Hellman secret-sharing systems:

Each table row lists the first quartile of many speed measurements, the median of many speed measurements, the third quartile of many speed measurements, and the name of the primitive. Measurements with large variance are indicated in red with question marks. The symbol T: (starting with supercop-20200816) means that the SUPERCOP database at the time of benchmarking did not list constant time as a goal for this implementation. The symbol T!!! means that constant time was listed as a goal for this implementation, but that the implementation failed TIMECOP. (TIMECOP failures are not necessarily security issues; they can sometimes be resolved by, e.g., declaring that a rejection-sampling condition is safe to declassify.)

There is a separate page with more information about each Diffie–Hellman system and each implementation. Designers and implementors interested in submitting new Diffie–Hellman systems and new implementations of existing systems should read the call for submissions.


Test results

Graphs: old (pkcycles,pkbytes) (scycles,pkbytes)

Cycles to generate a key pair
25%50%75%system
126593127019127536
T:
jacfp127i
132571132954133600
T:
kumjacfp127g
139439139740140298
T:
prjfp127i
145614146170146955
T:
hecfp127i
218364218781219493
T:
jacfp128bk
245958246756247982
T:
prjfp128bk
246009246897248178
T:
hecfp128fkt
246522247399248471
T:
hecfp128bk
247140247734248718
T:
hecfp128i
249007250546255261
T:
curve2251
316154?320892?403584?
T:
gls1271
548859548877550126
T:
kumfp127g
103572310361241037055
T:
kumfp128g
110977711102321110993
T:
curve25519
131510813162611318734
T:
ed448goldilocks
134918413503821353566
T:
nistp256
172923617303621732973
T:
kummer
208248521018222124850
T:
sclaus1024
724669272533687268435
T:
ed521gs
107770281085708810931874
T:
sclaus2048
121345531216822212202770
T:
claus
Cycles to compute a shared secret
25%50%75%system
556644556644557477
T:
kumfp127g
559428559469560046
T:
kumjacfp127g
726114726200727333
T:
jacfp128bk
761779772801777851
T:
gls1271
862674862741864460
T:
prjfp128bk
888794889496891588
T:
hecfp128bk
921407922810924532
T:
hecfp128fkt
931967932433934771
T:
jacfp127i
101058210136321021028
T:
curve2251
106133010618481062692
T:
kumfp128g
110797111085621110777
T:
prjfp127i
110958111096091110620
T:
curve25519
114136711418961144904
T:
hecfp127i
172852617288921731226
T:
kummer
195638119576441958011
T:
hecfp128i
216125721766062180137
T:
sclaus1024
447364244747764483428
T:
ed448goldilocks
454028445419074556845
T:
nistp256
724486372466057263503
T:
ed521gs
108771081090856511103397
T:
sclaus2048
121400331216185312205928
T:
claus